5,604 research outputs found

    Microscopic laser-driven high-energy colliders

    Full text link
    The concept of a laser-guided e+ee^+e^- collider in the high-energy regime is presented and its feasibility discussed. Ultra-intense laser pulses and strong static magnetic fields are employed to unite in one stage the electron and positron acceleration and their head-on-head collision. We show that the resulting coherent collisions in the GeV regime yield an enormous enhancement of the luminosity with regard to conventional incoherent colliders

    Quincy and Torch Lake Railroad engine house facility management and interpretive plan

    Get PDF
    The “Quincy & Torch Lake Railroad Engine House Facility Management and Interpretive Plan was designed to serve as a guide to aid the Quincy Mine Hoist Association in their efforts to restore and interpret historic railroad resources under their stewardship. Early searches for existing management and interpretive plans demonstrated that similar plans were primarily produced by the National Park Service and were intended to guide large scale heritage sites that consist of a variety of cultural resources. This project adapts concepts found in those large scale management and interpretive site plans, to guide small scale site management, restoration, and interpretive projects. The document presents a three stage, second phase restoration process. Each stage of development is guided by a series of management and interpretive goals and objectives which were set for the engine house facility

    Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    Get PDF
    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified

    Evolutionary origin and diversification of epidermal barrier proteins in amniotes.

    Get PDF
    The evolution of amniotes has involved major molecular innovations in the epidermis. In particular, distinct structural proteins that undergo covalent cross-linking during cornification of keratinocytes facilitate the formation of mechanically resilient superficial cell layers and help to limit water loss to the environment. Special modes of cornification generate amniote-specific skin appendages such as claws, feathers, and hair. In mammals, many protein substrates of cornification are encoded by a cluster of genes, termed the epidermal differentiation complex (EDC). To provide a basis for hypotheses about the evolution of cornification proteins, we screened for homologs of the EDC in non-mammalian vertebrates. By comparative genomics, de novo gene prediction and gene expression analyses, we show that, in contrast to fish and amphibians, the chicken and the green anole lizard have EDC homologs comprising genes that are specifically expressed in the epidermis and in skin appendages. Our data suggest that an important component of the cornified protein envelope of mammalian keratinocytes, that is, loricrin, has originated in a common ancestor of modern amniotes, perhaps during the acquisition of a fully terrestrial lifestyle. Moreover, we provide evidence that the sauropsid-specific beta-keratins have evolved as a subclass of EDC genes. Based on the comprehensive characterization of the arrangement, exon-intron structures and conserved sequence elements of EDC genes, we propose new scenarios for the evolutionary origin of epidermal barrier proteins via fusion of neighboring S100A and peptidoglycan recognition protein genes, subsequent loss of exons and highly divergent sequence evolution

    Pemodelan Daya Pengadukan Selama Proses Dehidrasi Osmotik Irisan Mangga dalam Larutan Gula

    Full text link
    This study discusses mathematical model of agitation power due to the change of sugar solution concentration during the process of mango slices osmotic dehydration. The sugar solution agitation was performed in several levels of rotational speed to correlate the power number with the Reynolds number. Then, the obtained model was used to calculate the power consumption for various temperature and initial rotational speed of shaft. The results showed that the correlation can be used for various conditions of shaft rotational speed and solution concentration. Osmotic dehydration for 8 hours at conditions of 30-50OC with rotational speed of 143-525 rpm results in solution dilution from 61OBx to 50.5-52.5OBx. Temperature of 30OC with initial shaft rotational speed of 500 rpm results in power consumption ten times higher than that of 50OC and 148 rpm. Moreover, power consumption reduction up to 80% of initial energy consumption due to the dilution of the sugar solution during the osmotic dehydration process was obtained

    Characterization of a CCD array for Bragg spectroscopy

    Get PDF
    The average pixel distance as well as the relative orientation of an array of 6 CCD detectors have been measured with accuracies of about 0.5 nm and 50 μ\murad, respectively. Such a precision satisfies the needs of modern crystal spectroscopy experiments in the field of exotic atoms and highly charged ions. Two different measurements have been performed by illuminating masks in front of the detector array by remote sources of radiation. In one case, an aluminum mask was irradiated with X-rays and in a second attempt, a nanometric quartz wafer was illuminated by a light bulb. Both methods gave consistent results with a smaller error for the optical method. In addition, the thermal expansion of the CCD detectors was characterized between -105 C and -40 C.Comment: Submitted to Review of Scientific Instrument

    A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head

    Full text link
    Purpose: To develop a deep learning approach to de-noise optical coherence tomography (OCT) B-scans of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device (Spectralis) for both eyes of 20 subjects. For each eye, single-frame (without signal averaging), and multi-frame (75x signal averaging) volume scans were obtained. A custom deep learning network was then designed and trained with 2,328 "clean B-scans" (multi-frame B-scans), and their corresponding "noisy B-scans" (clean B-scans + gaussian noise) to de-noise the single-frame B-scans. The performance of the de-noising algorithm was assessed qualitatively, and quantitatively on 1,552 B-scans using the signal to noise ratio (SNR), contrast to noise ratio (CNR), and mean structural similarity index metrics (MSSIM). Results: The proposed algorithm successfully denoised unseen single-frame OCT B-scans. The denoised B-scans were qualitatively similar to their corresponding multi-frame B-scans, with enhanced visibility of the ONH tissues. The mean SNR increased from 4.02±0.684.02 \pm 0.68 dB (single-frame) to 8.14±1.038.14 \pm 1.03 dB (denoised). For all the ONH tissues, the mean CNR increased from 3.50±0.563.50 \pm 0.56 (single-frame) to 7.63±1.817.63 \pm 1.81 (denoised). The MSSIM increased from 0.13±0.020.13 \pm 0.02 (single frame) to 0.65±0.030.65 \pm 0.03 (denoised) when compared with the corresponding multi-frame B-scans. Conclusions: Our deep learning algorithm can denoise a single-frame OCT B-scan of the ONH in under 20 ms, thus offering a framework to obtain superior quality OCT B-scans with reduced scanning times and minimal patient discomfort
    corecore